Peroxygenase metabolism of N-acetylbenzidine by prostaglandin H synthase. Formation of an N-hydroxylamine.
نویسندگان
چکیده
Synthesis of prostaglandin H2 by prostaglandin H synthase (PHS) results in a two-electron oxidation of the enzyme. An active reduced enzyme is regenerated by reducing cofactors, which become oxidized. This report examines the mechanism by which PHS from ram seminal vesicle microsomes catalyzes the oxidation of the reducing cofactor N-acetylbenzidine (ABZ). During the conversion of 0.06 mM ABZ to its final end product, 4'-nitro-4-acetylaminobiphenyl, a new metabolite was observed when 1 mM ascorbic acid was present. Similar results were observed whether 0.2 mM arachidonic acid or 0.5 mM H2O2 was used as the substrate. This metabolite co-eluted with synthetic N'-hydroxy-N-acetylbenzidine (N'HA), but not with N-hydroxy-N-acetylbenzidine. The new metabolite was identified as N'HA by electrospray ionization/MS/MS. N'HA represented as much as 10% of the total radioactivity recovered by high pressure liquid chromatography. When N'HA was substituted for ABZ, PHS metabolized N'HA to 4'-nitro-4-acetylaminobiphenyl. Inhibitor studies demonstrated that metabolism was due to PHS, not cytochrome P-450. The lack of effect of 5,5-dimethyl-1-pyrroline N-oxide, mannitol, and superoxide dismutase suggests the lack of involvement of one-electron transfer reactions and suggests that hydroxyl radicals and superoxide are not sources of oxygen or oxidants. Oxygen uptake studies did not demonstrate a requirement for molecular oxygen. When [18O]H2O2 was used as the substrate, 18O enrichment was observed for 4'-nitro-4-acetylaminobiphenyl, but not for N'HA. A 97% enrichment was observed for one atom of 18O, and a 17 +/- 7% enrichment was observed for two 18O atoms. The rapid exchange of 18O-N'HA with water was suggested to explain the lack of enrichment of N'HA and the low enrichment of two 18O atoms into 4'-nitro-4-acetylaminobiphenyl. Results demonstrate a peroxygenase oxidation of ABZ and N'HA by PHS and suggest a stepwise oxidation of ABZ to N'-hydroxy, 4'-nitroso, and 4'-nitro products.
منابع مشابه
N'-(3'-monophospho-deoxyguanosin-8-yl)-N-acetylbenzidine formation by peroxidative metabolism.
N'-(3'-Monophospho-deoxyguanosin-8-yl)-N-acetylbenzidine (dGp-ABZ) is thought to play an important role in initiation of benzidine-induced bladder cancer in humans. This report assesses the possible formation of this adduct by peroxidatic activation of N-acetylbenzidine (ABZ). Adduct formation was measured by 32P-post-labeling. Ram seminal vesicle microsomes were used as a source of prostagland...
متن کاملN-glucuronidation of benzidine and its metabolites. Role in bladder cancer.
Workers exposed to high levels of benzidine have a 100-fold increased incidence of bladder cancer. This review evaluates the overall metabolism of benzidine to determine pathways important to initiation of bladder cancer. Upon incubation of benzidine with liver slices from rats, dogs, and humans, different proportions of this diamine were N-acetylated and N-glucuronidated. With dogs, a non-acet...
متن کاملRat liver cytochrome P450 metabolism of N-acetylbenzidine and N,N'-diacetylbenzidine.
To provide the information necessary for assessing risk and preventing tumorigenesis, the metabolism of N-acetylbenzidine and N,N'-diacetylbenzidine was assessed with rat liver microsomes from control and beta-naphthoflavone-treated rats. The oxidation of [3H]N-acetylbenzidine to [3H]N'-hydroxy-N-acetylbenzidine (N'HA), [3H]N-hydroxy-N-acetylbenzidine (NHA), and 3H-ring oxidation products was a...
متن کاملHuman N-acetylation of benzidine: role of NAT1 and NAT2.
These studies were designed to assess metabolism of benzidine and N-acetylbenzidine by N-acetyltransferase (NAT) NAT1 and NAT2. Metabolism was assessed using human recombinant NAT1 and NAT2 and human liver slices. For benzidine and N-acetylbenzidine, Km and Vmax values were higher for NAT1 than for NAT2. The clearance ratios (NAT1/NAT2) for benzidine and N-acetylbenzidine were 54 and 535, respe...
متن کاملMethemoglobin oxidation of N-acetylbenzidine to form a sulfinamide.
Aromatic amine sulfinamide adducts of hemoglobin are biomarkers of exposure and evidence for cytochrome P-450 N-hydroxylation. The possible peroxidatic formation of an N-acetylbenzidine (ABZ) sulfinamide adduct by methemoglobin was examined. Following addition of H2O2, 0.06 mM [3H]ABZ was metabolized by methemoglobin. With 0.3 mM glutathione, a new peak was observed, ABZ-SG, representing 17% of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 21 شماره
صفحات -
تاریخ انتشار 1999